

Enterprise Monitoring and Performance Management in 2022

Barton Robinson, CTO Velocity Software, Inc. Barton@velocitySoftware.com

Introduction to Velocity Software

Performance Management is a process

Performance Management: zVPS

Architecture is critical

Introduction to 30+ years of Velocity Software

- Founded 1988, VM/XA released 1989
- Continuous enhancements

Meeting current requirements (Docker, MongoDB, Splunk) Modernizing z/VM (after 50 years, why not?)

easily with zPRO

Introduction to Barton

1975: IBM San Francisco test data center (VM, VS1, DOS/VS)

1977: IBM Branch Systems Engineer, DOS/VS, VS1, SMPE

1981: Poughkeepsie VM Planning (tdy)

- VM/XA Migration Aid became VM/XA, VM/ESA, now z/VM
- HPO 1,2,3 High Performance Option

1983: IBM Washington System Center

HPO Performance Tuning Guide

1985: IBM: Sr. Mgr: San Jose Performance Evaluation Lab

1988 Velocity Software – first performance monitor for vm/xa

- PROFS/Office Vision was 75% of corporate email
- 1999: The mainframe was dead
- 2001: Linux on the mainframe (performance relevant again)

What I've learned about Performance Management

Performance Management is a process

- Performance Analysis
- Operational Alerts
- Capacity Planning
- Accounting/Charge back

My Product Objectives:

- Accuracy, longevity, scalability, extensible
- Minimize complexity
- Ease of use, support
- Modernization

Performance Management is a Process

Performance Analysis

- Understanding system, application performance
- Resolving current performance issues (z/VM, Linux, network)

Operational Alerts

- Supporting 100's/1000's of servers in many locations
- Defining and automating operational support

Capacity Planning

Providing input to the financial acquisition process

Accounting / Charge back

Building a financial model for resource billing

Performance management can NOT be the performance problem

Issues With Linux Performance Management

Operational cost of running agents

- 2% per server costs 1 IFL per 50 servers,
- Velocity targets less than .1% (point one percent) of ONE processor with one minute data collection per Linux server
- (One current installation complains about 20 ifls for agent....)

Data Accuracy not easy

Virtualized CPU (SMT) accounting must be normalized

Capture ratios

- Data must be complete,
- Capture ratio normally at 100% to the process level

Skills

- Skills are lacking in managing highly virtualized environments
- Access to skills critical when there are performance problems.

Performance Management Education (on demand)

Education in Performance Management

Velocity Software's Tuning Guide "VelocitySoftware.com/customer"

Tuning Topics Table of Contents

- Performance Tuning and Analysis
 - **z/VM Performance**
 - Linux Performance
 - z/VSE Performance
 - z/OS Performance
 - CICS Performance
- Chargeback / Accounting
 - **z/VM Performance Chargeback**
 - Linux Performance Chargeback
 - z/VSE Performance Chargeback
 - z/OS Performance Chargeback
 - <u>CICS Performance Chargeback</u>

Velocity Software Performance workshop, annually 2 days

June 14-15, Binghamton, New York "VelocitySoftware.com/seminar/workshop.html"

Data Accuracy

Correct data

- Linux in virtualized environments was very wrong (bogomips?)
- "stealtime" implemented, but often misunderstood
- Linux in SMT environment challenging (not intuitive)
- Capacity of SMT environment increases by how much?
- http://VelocitySoftware.com/SMT.HTML

Capture ratios (is the data valid?)

- Do we know where our resources are being utilized?
- Compare data from multiple sources (HMC, z/VM, Linux, etc)
- ("http://VelocitySoftware.com/handouts/capture.html")

Product Longevity - Data Sources

Longevity requires consistency and standards

- Correct data implies standard data
- Data sources must be consistent, low overhead, integrated
- zVPS uses standard sources (mostly....)

z/VM: CP Monitor (IBM) Exclusively

Networks: snmp mib-ii (standard, open source)

Linux: netsnmp (standard with Linux, "z" and "x")

- Netsnmp is 1% "agentless" agent (ucd mib, host mib)
- Velocity Software snmp mib ("z" and "x") replaces most metrics for .1%
- ALL Distributions (suse, redhat, ubuntu), all releases (z & x)

VSE: IBM mib, Velocity Software mib, CICS (DMF) (2021)

- ("http://VelocitySoftware.com/vsecics.html")
- BSI/CSI TCPIP from the vendors

z/OS: SMF records (IBM/logstream) (70/30/75/113,CICS, DB2, etc)

Performance Mgmt Requirements

Single "modern" simple pane of glass for all platforms, geographies

- No enterprise has only one platform or just one location
- One user interface minimizes learning curves
- Evaluate multiple systems, networks, platforms in one view

Minimize Overhead of performance management

- Processor costs of performance management can be large
- Many (z/OS) installations run 15-minute granularity to reduce overhead
- "Only run this when there is a problem" is not performance management

A target of less than 1% of CPU resource for performance management is a reasonable target

Diagnostic tools are not management tools

Simple Architecture that is easily extended

zVPS Infrastructure for 30+ years

zVWS: Native z/VM Webserver

- CMS Based
- Written in Assembler, because that is just fast
- Generalized server

VelocitySoftware.com

- Velocity-Software.com
- VelocitySoftware.net
- Linuxvm.org
- VMWorkshop.org (no, we did not hijack the workshop, we ARE the workshop)
- GGWSC.ORG

Velocity Applications

- zView
- zPortal
- zPRO (No smapi, no java, No linux server requirements, no complexities)

Linux Capture Ratios

LINUX Process Conf

Report: ESALNXC

High cpu capture ratio

Node/ VM <linux cpu="" pct=""> <process data=""> Capt</process></linux>	ture Prorate
Name ServerID Total Syst User Total Syst User	atio Factor
10:03:00	
NEALE1 LNEALE1 100.0 11.4 88.6 100.2 11.5 88.7 1.	002/ 1.000

Report: ES	SALNXP		LINUX I	HOST I	Proces	ss Sta	atist:	ics Re	eport
node/	<-Pro	cess I	dent->	Nice	<	CPU	J Pero	cents-	>
Name	ID	PPID	GRP	Valu	Tot	sys	user	syst	usrt
10:03:00									
NEALE1	0	0	0	0	100	0.43	3.35	11.0	85.4
kswapd0	100	1	1	0	0.12	0.12	0	0	0
snmpd	1013	1	1012	-10	0.13	0.03	0.10	0	0
sh	3653	3652	30124	0	52.7	0	0	9.37	43.3
gmake	9751	9750	30124	0	43.4	0.02	0.02	1.37	42.0
sh	10129	9751	30124	0	0.02	0.02	0	0	0
sh	10130	10129	30124	0	0.63	0.03	0.23	0.28	0.08
cc1	10307	10306	30124	0	3.12	0.18	2.93	0	0
rpmbuild	30124	16382	30124	0	0.07	0.03	0.03	0	0
sh	30125	30124	30124	0	0.02	0	0.02	0	0
gmake	30126	30125	30124	0	0.02	0	0.02	0	0

Node/	<-Pro	cess I	dent->	<pr< th=""></pr<>		
Name	ID	PPID	GRP	Path		
NEALE1						
init	1	0	0	init [3]		
migratio	2	1	0	migratio		
ksoftirq	3	1	0	ksoftirq		
events/0	4	1	0	events/0		
khelper	5	4	0	khelper		
kblockd/	6	4	0	kblockd/		
cio	41	4	0	cio		
cio_noti	42	4	0	cio_noti		
kslowcrw	43	4	0	kslowcrw		
appldata	96	4	0	appldata		
aio/0	101	4	0	aio/0		
pdflush	5266	4	0	pdflush		
pdflush	26647	4	0	pdflush		
kswapd0	100	1	1	kswapd0		
kmcheck	158	1	1	kmcheck		
syslogd	976	1	976	/sbin/sy		
klogd	979	1	979	/sbin/kl		
snmpd	1013	1	1012	snmpd		
portmap	1030	1	1030	/sbin/po		
rpciod	1034	1	1	rpciod		
lockd	1035	1	1	lockd		
sshd	1072	1	1072	/usr/sbi		
sshd	16272	1072	16272	sshd: bu		
sshd	16288	1072	16288	sshd: bu		
sshd	16290	16288	16288	sshd: bu		
bash	16291	16290	16291	bash		
python	16312	16291	16291	python		
do-bui	16313	16312 16313	16291 16291			
bb_do	16382	/usr/bin				
rpmb	16415	16382	16415	rpmbuild		
rpmb	30124	16382	30124	rpmbuild		

Monitoring Extensions Included

Not just "System" Performance Management....

- Oracle (vsiora)
- JVM
- GPFS
- Docker (vsidkr)
- MongoDB Enterprise

IBM Secure Service Container (collectd - open source)

Linux/x86 (Microsoft, ESX too) can also be monitored

zOPERATOR - Fully integrated operations (modern, browser) console

zALERT: Performance data alerting and notification

- Interface to SNMP management console (NETCOOL, HPOpenView)
- User tailored alerts
- Web based alerts

Monitoring Extensions: OpenShift ???

Collectd is an open source performance data collector for containers

- Secure Service Container project validated with IBM
- OpenShift?

Instructions for openshift to export data:)

```
Create a yaml file with below content
apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    prometheusK8s:
      remoteWrite:
                                                      ←----The important part
      - url: http://<external supported tool url>
        basicAuth:
          username:
            name: remoteWriteAuth
            key: elastic
          password:
            name: remoteWriteAuth
            key: password
Apply created yaml file, with correct Remote URL and its credentials OR TLS
```

zVPS Enterprise View is scalable

Single pane of glass

Data from "Many" multiple LPARs(50) / geographies(3)

zVPS Enterprise View – All LPARs in Enterprise

Tailorable, expandable, zoomable

Linux (or VSE, z/OS) performance in one click

End users define their environment(s)

- Linux administrators get most everything in one click
- Secure, no need for logon
- Fast and efficient

zVPS Enterprise View – Access

Very fast access

- VSE
- z/OS
- Linux

z/OS performance in one click

End users define their environment(s) – z/OS at one click

- Secure, no need for logon
- Fast and efficient

zVSE performance in one click

End users define their environment(s) – z/VSE at one click

- Secure, no need for logon
- Fast and efficient, system partitions, jobs pretty chart at one click

Multiple Systems On Single Pane

Single pane of glass

- Data from multiple LPARs / geographies
- Menu driven end user designed view

zVIEW

End users define their environment(s)

Not just for Systems Programmers

Menu driven

Capacity Planning Dynamic Example....

Dynamic Charts

Data extracted from database dynamically to create graph

zOperator: Operational Alerts

3270 Style Alerts (50+ sample alerts provided)

Or Browser based Click Thru or SMS, email...

Enterprise Integration

zVPS Integrates into enterprise existing processes

- In 1990's VM was a silo, not integrated into enterprise IT
 - (how can two sysprogs support 50,000 O/V users?)
- z/VM is not a "silo"

Capacity Planning

- MXG, MICS
- Mainview

Operational Support into other management consoles

- Omnibus / netcool / snmp management consoles
- Snmp alerts
- Splunk, Instana (IBM)

Chargeback / accounting

Export of metrics (CSV, flat files)

Performance Mgmt Summary

Architecture critical

- Low overhead
- Easily enhanced
- Valid data
- No pre-requisites (need z/VM)

Standard interfaces

- Provides simplicity
- Release to release just works
- Installation quick and easy

Minimal Overhead (Good citizenship)

- 1% of one engine for "Velocity"
- .1% of one engine for Linux at One minute granularity
- Scalable for thousands of servers

Performance Mgmt See for yourself...

Velocity Software demonstration site

- "http://demo.VelocitySoftware.com"
- Zview, enterprise, zPro, Portal

Velocity Software is more than z/VM

Platforms supported well:

- z/VM
- Linux
- z/VSE: SaaS Beta Testing, no charge
- Containers (docker)
- Secure Software Container (SSC)
- OpenShift

Platforms where we are behind (working on it)

- z/OS: Offload to z/VM, no java, very low cost, overhead
- VMWare/ESX

Application monitoring (Linux)

- GDPS
- Oracle, Java
- MongoDB, Postgres
- Splunk, Instana

Velocity Software is Modernizing z/VM

See(saw) session "Modernizing the Great z/VM Platform"

zPRO modernizes z/VM with browser interface (3270)

- Most z/VM administration functions on a secure browser (zDIRECT even)
- Operational functions
- End user capabilities: change server configurations
- PaaS and it works easily

Most Users no longer need 3270 skills

Very Simple architecture

- Simple to install (only requires z/VM and zVPS)
- Uses Native z/VM Web Server (zVWS)!
- No "smapi", No "linux server" requirements, No java
- Non-intrusive, no system modifications
- Outside services not required (but we are available)
- (as compared to xcat, cma,)

The Velocity Software Team: Metal to Cloud

Dedicated to promoting and supporting the z/VM Platform

- Experienced systems programmers (z/VM, Linux, VSE, z/OS)
- Experienced performance analysts
- Providing services as needed...

Z15 T02 ESP — Metal to Cloud in 2 days http://velocitysoftware.com/MetaltoCloud

- Two days after IBM code 20, PaaS cloud was ready:
- Four member SSI z/VM cluster operational
- RACF, TCPIP operational (Only IBM tools installed)
- zVPS Installed and operational
- zPRO Installed and operational, zDirect installed
- Installed Linux gold images
- Cloned Linux 155 times in 20 minutes
- Cloned 50 2G servers in 3 minutes
- (Compression on z15 very cool, implemented it in several places)

Summary

zVPS:

- Continuous enhancements for 30+ years
- More than z/VM

Velocity Software

- Worldwide customer base
- Modernizing the platform
- Supports the VM Workshop

Thank you. Happy Birthday z/VM!!!

