
Velocity Software Inc.
196-D Castro Street
Mountain View CA 94041
650-964-8867

Velocity Software GmbH
Max-Joseph-Str. 5
D-68167 Mannheim
Germany
+49 (0)621 373844

Barton Robinson,
barton@velocitysoftware.com
If you can’t measure it, I’m just not
interested….

zVRM
The Velocity Resource Manager

Copyright © 2019 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

mailto:barton@velocitysoftware.com

zVRM Overview

The point of zVRM: Dynamically size Linux servers to
meet current workload requirements

Velocity Software’s mission:

• Enhancing z/VM Platform Acceptance

Agenda:

▪ Processor cache: CPU Case Study

▪ Memory options

▪ CPU options

▪ Cpuplugd issues

▪ VMRM issues

▪ zVRM Overview

2

The “Large Server” Problem

Servers moving from x86 oversized
▪ Typically more (inexpensive) storage on x86
▪ More (less efficient) processors on x86
▪ Education and trust in z

Why large virtual machines?

▪ Intel servers require and outage to add resources

▪ Intel hardware is much less expensive

▪ The standard is to oversize everything

Cookie cutter virtual machines make life easier

▪ Cloning is easier

▪ Requires little planning

▪ Easy to provide “small, medium and large”

3

Ordering Linux images by gues(s)t
size

What each shirt gets filled with

Memory

vCPU’s

Free

Memor

y

Linux spreads work out over all

the vCPU’s assigned to it
z/VM manages all virtual

to real processors

assignments

Linux touches all

memory assigned to it

z/VM can give the

system back “free

memory”

Linux can grow and shrink

memory and vCPU’s

z/VM provides great

feedback mechanisms for

memory and vCPU needs

The Result

Expensive Real storage is overcommitted
▪ Workloads variable
▪ Idle servers consume storage
▪ Storage requirement larger

Multiple processors result is spinlocks
▪ The more vCPUs, the more spinlocks (DIAG 44, 9C)
▪ Spinlocks cause both system overhead and delays
▪ Overhead and higher CPI results in more IFLs

6

Case Study

Cookie cutter servers

▪ 85gb

▪ 16 VCPU

▪ 100+ servers

What should server size be?

▪ What should CPU busy be?

▪ What should free storage be?

8

Linux Configuration Guideline Summary

Virtual machine size
▪ Minimize until some swap (swap out initialization pages)
▪ Minimize vCPU counts to avoid overhead

Swapping
▪ swap to virtual disk
▪ Define 2 virtual disks,

• One to meet the average requirement
• Second one for overflow - Insurance

▪ Use DIAG driver instead of FBA
• Reduces I/O by factor of 8

Virtual processors
▪ Minimize to meet the workload/application requirement
▪ Ensure diag 9c, not 44

Infrastructure costs
▪ Minimize – shared resource architecture

Cpuplugd Operational Details

9

Report: ESAOPER Operator/System Log
Monitor initialized: at on
10:15:00 LNXS3J2 vCPU stopped: 1
10:15:00 LNXS3J2 vCPU stopped: 2
10:15:00 LNXS3J2 vCPU stopped: 3
10:15:00 LNXS3J2 vCPU stopped: 4
10:15:00 LNXS3J2 vCPU stopped: 5
10:17:00 LNXS3J2 vCPU started: 1
10:17:00 LNXS3J2 vCPU started: 2
10:17:00 LNXS3J2 vCPU started: 3
10:17:00 LNXS3J2 vCPU started: 4
10:17:00 LNXS3J2 vCPU started: 5
10:17:00 LNXS3J2 vCPU started: 6
10:17:00 LNXS3J2 vCPU started: 7
10:17:00 LNXS3J2 vCPU started: 8
10:17:00 LNXS3J2 vCPU started: 9
10:17:00 LNXS3J2 vCPU started: 16
10:17:00 LNXS3J2 vCPU started: 17
10:17:00 LNXS3J2 vCPU started: 18
10:17:00 LNXS3J2 vCPU started: 19
10:17:00 LNXS3J2 vCPU started: 20
10:17:00 LNXS3J2 vCPU started: 21
10:29:00 LNXS3J2 vCPU stopped: 20
10:29:00 LNXS3J2 vCPU stopped: 21
10:30:00 LNXS3J2 vCPU started: 20
10:30:00 LNXS3J2 vCPU started: 21
10:36:00 LNXS3J2 vCPU stopped: 19

Operational changes are logged

• Evaluated at monitor start

• vCPU start/stops?

Cpuplugd at work

• Is it effective?

Virtual Machine Storage : ESAUCD2 (again)

10

Report: ESAUCD2 LINUX UCD Memory Analysis Report

Node/ <-------------------------Storage Sizes (in MegaBytes)--

Time/ <--Real Storage--> <-----SWAP Storage----> Total <------

Date Total Avail Used Total Avail Used MIN Avail CMM

-------- ------ ----- ----- ----- ----- ----- ----- ----- ------

10:30:00

LNXS1J2 85304 41209 44095 2810 2810 0 15.6 44019 0

LNXS1J4 85304 39480 45824 2810 2810 0 15.6 42290 0

LNXS2J2 85304 29881 55423 2810 2810 0 15.6 32691 0

LNXS3J2 85304 31377 53927 2810 2810 0 15.6 34187 0

Linux storage analysis (“85 GByte”)

• Swap Unused

• Available storage 140GB

• More if Linux was slightly constrained

• CMM not being utilized

11

“other” resource managers

VMRM - IBM
▪ No feedback mechanism -> no insight into application requirements

▪ No storage metrics available

▪ Would arbitrarily take storage away from servers

▪ Servers crashed for lack of storage

▪ Relative shares set “ridiculous”….

▪ Many controls added for manual control

Cpuplugd – opensource

▪ Each server individually manually configured

▪ Turning off vCPUs gives remaining vCPUs very high priority

Some history

Cooperative Memory Management (CMM1, z/VM 5.2)

▪ Provided command support for Linux to give up ram

▪ Builds the “CMM Balloon” and tells CP to re-use the storage

▪ Still available

IBM’s VMRM Cooperative Memory Management (2007)
▪ CP XAUTOLOG VMRMSVM

▪ Used CMM based on external sizing

▪ Zero ability to look inside Linux for “free storage”

▪ Attempts to utilize resulted in bad things

▪ Adjusted SHARES based on business requirements

▪ “I saw some relative shares of 1 which was a bit of shock”

Collaborative Memory Management Assist (CMM2)

▪ Hardware assist, seemed too complicated

13

zVRM Overview

Centrally managed via zPRO

▪ By LPAR defaults

▪ By node group

▪ By node

zVPS provides feedback and performance metrics

CMM “balloon” used for storage management

▪ Small increments every interval

▪ Swapping causes immediate balloon pop

▪ Will minimize residency of stale storage

CPU vary on / off

▪ Uses the zPRO command interface

▪ Threshold to ensure minimum vCPU counts

▪ Target utilization controlled by zVRM

14

zVRM Controls

CMM “balloon” used for storage management

▪ Small (defined) increments every interval

▪ Swapping causes immediate balloon pop

▪ Will minimize residency of stale storage

▪ Maintains target percent of available storage

CPU vary on / off

▪ Uses the zPRO command interface

▪ Threshold to ensure minimum vCPU counts

▪ Target utilization controlled by zVRM

• (higher for batch, lower for realtime)

zVRM Functions

Centralized control via zPRO interface

▪ One screen, all LPARs

All data sourced on one minute interval

▪ Standard zVPS interval

▪ Decisions based on Linux metrics

Storage:

▪ Reduces free storage incrementally

CPU Counts online managed to CPU utilization

▪ Requires zPRO API

Linux Server Requirements

Storage / CMM

▪ ‘modprobe cmm’

CPU Command interface

▪ zPRO command interface as part of zPRO

Control Parameters

Control by server, by user class

▪ Parameter settings

▪ SMSG interface with same format

ZVRM PARMS

▪ Provides default settings

zPRO -> z/VM Administration -> zVRM

▪ Portal to manage zVRM for enterprise

Note: zVRM runs on ALL managed LPARs

Control Parameters

Storage control:
▪ CMM DEFAULT ON INCREMENT 32M

▪ CMM DEFAULT STGAVAIL 20 ;Minimum storage available

▪ CMM SRVR SLES15 ON INCREMENT 64M

▪ CMM SRVR SLES12 ON INCREMENT 128M

▪ CMM CLAS THEUSRS OFF

▪ CMM CLAS SERVERS ON

CPU Control
▪ CPU DEFAULT MINCPU 4

▪ CPU DEFAULT CPUPCT 25

▪ CPU SRVR sles15 ON MINCPU 2

▪ CPU SRVR sles15 ON CPUPCT 30

zPRO Enterprise Portal for zVRM

zPRO Enterprise Portal for zVRM

Manage across LPARs

▪ (VSIVM4,VSIVC1)

▪ Manage classes

▪ Manage servers

Management Requirements

Don’t drive a car without

▪ A speedometer….

▪ A gas gauge

▪ Headlights….

zVPS provides Linux metrics (by server)

22

zVRM Controls

Storage controls

▪ Free storage (percent)

▪ Increment size

23

zVRM Controls

vCPU controls

▪ Share controls by vCPU

▪ Target vCPU utilization

24

zVRM Summary

Cookie cutter servers manageable

▪ Storage / ram reduced to meet workload requirements

▪ vCPU counts managed to meet workload requirements

▪ Share settings, dispatch priorities managed

Centralized management

▪ zPRO function

▪ By node class, node

Optimize over commitment of resources

▪ Full feedback mechanisms

▪ Data driven decisions

Recap and Thankyou

zVRM

▪ Centralized resource management

▪ Will reduce memory requirements

▪ Will reduce CPU requirements

▪ Will make your machine faster

▪ Allows large “cookie cutter servers”

▪ Future opportunities

Questions and suggestions can be sent to
‘barton@velocitysoftware.com’

	Slide 1: zVRM The Velocity Resource Manager
	Slide 2: zVRM Overview
	Slide 3: The “Large Server” Problem
	Slide 4: Ordering Linux images by gues(s)t size
	Slide 5: What each shirt gets filled with
	Slide 6: The Result
	Slide 7: Case Study
	Slide 8: Linux Configuration Guideline Summary
	Slide 9: Cpuplugd Operational Details
	Slide 10: Virtual Machine Storage : ESAUCD2 (again)
	Slide 11: “other” resource managers
	Slide 12: Some history
	Slide 13: zVRM Overview
	Slide 14: zVRM Controls
	Slide 15: zVRM Functions
	Slide 16: Linux Server Requirements
	Slide 17: Control Parameters
	Slide 18: Control Parameters
	Slide 19: zPRO Enterprise Portal for zVRM
	Slide 20: zPRO Enterprise Portal for zVRM
	Slide 21: Management Requirements
	Slide 22: zVRM Controls
	Slide 23: zVRM Controls
	Slide 24: zVRM Summary
	Slide 25: Recap and Thankyou

